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Batch implementations of support vector regression (SVR) are inef�cient
when used in an on-line setting because they must be retrained from
scratch every time the training set is modi�ed. Following an incremen-
tal support vector classi�cation algorithm introduced by Cauwenberghs
and Poggio (2001), we have developed an accurate on-line support vec-
tor regression (AOSVR) that ef�ciently updates a trained SVR function
whenever a sample is added to or removed from the training set. The
updated SVR function is identical to that produced by a batch algorithm.
Applications of AOSVRin both on-line and cross-validation scenarios are
presented. In both scenarios, numerical experiments indicate that AOSVR
is faster than batch SVR algorithms with both cold and warm start.

1 Introduction

Support vector regression (SVR) �ts a continuous-valued function to data in
a way that shares many of the advantages of support vector machine (SVM)
classi�cation. Most algorithms for SVR (Smola & Schölkopf, 1998; Chang &
Lin, 2002) require that training samples be delivered in a single batch. For
applications such as on-line time-series prediction or leave-one-out cross-
validation, a new model is desired each time a new sample is added to
(or removed from) the training set. Retraining from scratch for each new
data point can be very expensive. Approximate on-line training algorithms
have previously been proposed for SVMs (Syed, Liu, & Sung, 1999; Csato
& Opper, 2001; Gentile, 2001; Graepel, Herbrich, & Williamson, 2001; Herb-
ster, 2001; Li & Long, 1999; Kivinen, Smola, & Williamson, 2002; Ralaivola
& d’Alche-Buc, 2001). We propose an accurate on-line support vector re-
gression (AOSVR) algorithm that follows the approach of Cauwenberghs
and Poggio (2001) for incremental SVM classi�cation.
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This article is organized as follows. The formulation of the SVR problem
and the development of the Karush-Kuhn- Tucker (KKT) conditions that
its solution must satisfy are presented in section 2. The incremental SVR
algorithm is derived in section 3, and a decremental version is described
in section 4. Two applications of the AOSVR algorithm are presented in
section 5, along with a comparison to batch algorithms uing both cold start
and warm start.

2 Support Vector Regression and the Karush-Kuhn Tucker Conditions

A more detailed version of the following presentation of SVR theory can be
found in Smola and Schölkopf (1998).

Given a training set T D f.xi; yi/; i D 1 ¢ ¢ ¢ lg, where xi²RN , and yi²R, we
construct a linear regression function,

f .x/ D WT8.x/ C b; (2.1)

on a feature space F. Here, W is a vector in F, and 8(x) maps the input x
to a vector in F. The W and b in equation 2.1 are obtained by solving an
optimization problem:

min
W;b

P D 1
2

WTW C C
lX

iD1

.»i C »¤
i /

s:t: yi ¡ .WT8.x/ C b/ · " C »i (2.2)

.WT8.x/ C b/ ¡ yi · " C » ¤
i

»i; »¤
i ¸ 0; i D 1 ¢ ¢ ¢ l:

The optimization criterion penalizes data points whose y-values differ from
f (x) by more than ". The slack variables, » and »¤, correspond to the size of
this excess deviation for positive and negative deviations, respectively, as
shown in Figure 1.

Introducing Lagrange multipliers ®; ®¤; ´, and ´¤, we can write the cor-
responding Lagrangian as

LP D
1
2

WTW C C
lX

iD1

.»i C »¤
i / ¡

lX

iD1

.´i»i C ´¤
i »¤

i /

¡
lX

iD1

®i." C »i C yi ¡ WT8.xi/ ¡ b/

¡
lX

iD1

®¤
i ." C »¤

i ¡ yi C WT8.xi/ C b/

s:t: ®i; ®¤
i ; ´i; ´¤

i ¸ 0:
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Figure 1: The "-insensitive loss function and the role of the slack variables » and
» ¤.

This in turn leads to the dual optimization problem:

min
®;®¤

D D 1
2

lX

iD1

lX

jD1

Qij.®i ¡ ®¤
i /.®j ¡ ®¤

j / C "
lX

iD1

.®i C ®¤
i /

¡
lX

iD1

yi.®i ¡ ®¤
i /

s:t: 0 · ®i; ®¤
i · C i D 1; : : : ; l; (2.3)

lX

iD1

.®i ¡ ®¤
i / D 0;

where Qij D ©.xi/
T©.xj/ D K.xi/; xj/. Here K.xi; xj/ is a kernel function

(Smola& Schölkopf, 1998). Given the solution of equation 2.3, the regression
function (2.1) can be written as

f .x/ D
lX

iD1

.®i ¡ ®¤
i /K.xi; x/ C b: (2.4)
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The Lagrange formulation of equation 2.3 can be represented as

LD D
1
2

lX

iD1

.®i ¡ ®¤
i /.®j ¡ ®¤

j / C "

lX

iD1

.®i C ®¤
i / ¡

lX

iD1

yi.®i ¡ ®¤
i /

¡
lX

iD1

.±i®i C ±¤
i ®¤

i / C
lX

iD1

[ui.®i ¡ C/ C u¤
i .®¤

i ¡ C/]

C ³

lX

iD1

.®i ¡ ®¤
i /; (2.5)

where ±
.¤/
i , u.¤/

i , and ³ are the Lagrange multipliers. Optimizing this La-
grangian leads to the Karush-Kuhn-Tucker (KKT) conditions:

@LD

@®i
D

lX

jD1

Qij.®j ¡ ®¤
j / C " ¡ yi C ³ ¡ ±i C ui D 0

@LD

@®¤
i

D ¡
lX

jD1

Qij.®j ¡ ®¤
j / C " C yi ¡ ³ ¡ ±¤

i C u¤
i D 0 (2.6)

±.¤/
i ¸ 0; ±.¤/

i ®.¤/
i D 0

u.¤/
i ¸ 0; u.¤/

i .®.¤/
i ¡ C/ D 0:

Note that ³ in equation 2.6 is equal to b in equations 2.1 and 2.4 at optimality
(Chang & Lin, 2002).

According to the KKT conditions 2.6, at most one of ®i and ®¤
i will be

nonzero, and both are nonnegative. Therefore, we can de�ne a coef�cient
difference µi as

µi D ®i ¡ ®¤
i ; (2.7)

and note that µi determines both ®i and ®¤
i .

De�ne a margin function h.xi/ for the ith sample xi as

h.xi/ ´ f .xi/ ¡ yi D
lX

jD1

Qijµj ¡ yi C b: (2.8)

Combining equations 2.6, 2.7, and 2.8, we can obtain:

8
>>>>><

>>>>>:

h.xi/ ¸ "; µi D ¡C
h.xi/ D "; ¡C < µi < 0

¡" · h.xi/ · " µi D 0

h.xi/ D ¡"; 0 < µi < C
h.xi/ · ¡"; µi D C

(2.9)
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There are�ve conditions in equation 2.9, compared to the three conditions
in support vector classi�cation (see equation 2 in Cauwenberghs & Poggio,
2001), but like the conditions in support vector classi�cation, they can be
identi�ed with three subsets into which the samples in training set T can be
classi�ed. The difference is that two of the subsets (E and S) are themselves
composed of two disconnected components, depending on the sign of the
error f .xi/ ¡ yi.

The E Set: Error support vectors: E D fi j jµij D Cg (2.10)

The S Set: Margin support vectors: S D fi j 0 < jµij < Cg (2.11)

The R Set: Remaining samples: R D fi j µi D 0g: (2.12)

3 Incremental Algorithm

The incremental algorithm updates the trained SVR function whenever a
new sample xc is added to the training set T. The basic idea is to change
the coef�cient µc corresponding to the new sample xc in a �nite number of
discrete steps until it meets the KKT conditions, while ensuring that the
existing samples in T continue to satisfy the KKT conditions at each step.
In this section, we �rst derive the relation between the change of µc, or 1µc,
and the change of other coef�cients under the KKT conditions, and then
propose a method to determine the largest allowed 1µc for each step. A
pseudocode description of this algorithm is provided in the appendix.

3.1 Derivation of the Incremental Relations. Let xc be a new training
sample that is added to T. We initially set µc D 0 and then gradually change
(increase or decrease) the value of µc under the KKT conditions, equation 2.9.

According to equations 2.6, 2.7, and 2.9, the incremental relation between
1h.xi/; 1µi , and 1b is given by:

1h.xi/ D Qic1µc C
lX

iD1

Qij1µj C 1b: (3.1)

From the equality condition in equation 2.3, we have

µc C
lX

iD1

µi D 0: (3.2)

Combining equations 2.9 through 2.12 and 3.1 and 3.2, we obtain:
X

j2S

Qij1µj C 1b D ¡Qic1µc where i 2 S

X

j2S

1µj D ¡1µc: (3.3)
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If we de�ne the index of the samples in the S set as

S D fs1; s2; : : : ; sls g; (3.4)

equation 3.3 can be represented in matrix form as

2

6664

0 1 ¢ ¢ ¢ 1
1 Qs1s1 ¢ ¢ ¢ Qs1sls

:::
:::

: : :
:::

1 Qsls s1 ¢ ¢ ¢ Qsls sls

3

7775

2

6664

1b
1µs1

:::

1µsls

3

7775 D ¡

2

6664

1
Qs1c

:::

Qsls c

3

7775 1µc; (3.5)

that is,
2

6664

1b
1µs1

:::

1µsls

3

7775 D ¯1µc (3.6)

where

¯ D

2

6664

¯

¯s1

:::

¯sls

3

7775 D ¡R

2

6664

1
Qs1c

:::

Qsls c

3

7775 ;

where R D

2

6664

0 1 ¢ ¢ ¢ 1
1 Qs1s1 ¢ ¢ ¢ Qs1sls

:::
:::

: : :
:::

1 Qsls s1 ¢ ¢ ¢ Qsls sls

3

7775

¡1

(3.7)

De�ne a non-S, or N, set as N D E [ R D fn1; n2; : : : ; nlng: Combining
equations 2.9 through 2.12, 3.1, and 3.6, we obtain

2

6664

1h.xn1/

1h.xn2/
:::

1h.xnln
/

3

7775
D ° 1µc (3.8)

where,

° D

2

6664

Qn1c
Qn2c

:::

Qnln c

3

7775
C

2

6664

1 Qn1s1 ¢ ¢ ¢ Qn1sls

1 Qn2s1 ¢ ¢ ¢ Qn2sls

:::
:::

: : :
:::

1 Qnln s1 ¢ ¢ ¢ Qnln sls

3

7775 ¯: (3.9)
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In the special case when S set is empty, according to equations 3.1 and 3.2,
equation 3.9 simpli�es to 1h.xn/ D 1b, for all n 2 E [ R.

Given 1µc, we can update µi; i 2 S and b according to equation 3.6 and
update h.xi/; i 2 N according to equation 3.8. Moreover, equation 2.9 sug-
gests that µi; i 2 N, and h.xi/; i 2 S are constant if the S set stays unchanged.
Therefore, the results presented in this section enable us to update all the µi
and h.xi/ given 1µc. In the next section, we address the question of how to
�nd an appropriate 1µc.

3.2 AOSVR Bookkeeping Procedure. Equations 3.6 and 3.8 hold only
when the samples in the S set do not change membership. Therefore, 1µc is
chosen to be the largest value that either can maintain the S set unchanged
or lead to the termination of the incremental algorithm.

The �rst step is to determine whether the change 1µc should be positive
or negative. According to equation 2.9,

sign.1µc/ D sign.yc ¡ f .xc// D sign.¡h.xc//: (3.10)

The next step is to determine a bound on 1µc imposed by each sample in
the training set. To simplify exposition, we consider only the case 1µc > 0
and remark that the case 1µc < 0 is similar.
For the new sample xc, there are two cases:

Case 1: h.xc/ changes from h.xc/ < ¡" to h.xc/ D ¡", and the new
sample xc is added to the S set, and the algorithm terminates.

Case 2: If µc increases from µc < C to µc D C, the new sample xc is added
to the E set, and the algorithml terminates.

For each sample xi in the set S,

Case 3: If µi changes from 0 < jµij < C to jµij D C, sample xi changes
from the S set to the E set. If µi changes to µi D 0, sample xi changes
from the S set to the R set.

For each sample xi in the set E,

Case 4: If h.xi/ changes from jh.xi/j > " to jh.xi/j D ", xi is moved from
the E set to the S set.

For each sample xi in the set R,

Case 5: If h.xi/ changes from jh.xi/j < " to jh.xi/j D ", xi is moved from
the R set to the S set.

The bookkeeping procedure is to trace each sample in the training set
T against these �ve cases and determine the allowed 1µc for each sample
according to equation 3.6 or 3.8. The �nal 1µc is de�ned as the one with
minimum absolute value among all the possible 1µc.
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3.3 Ef�ciently Updating the R Matrix. The matrix R that is used in
equation 3.7,

R D

2

6664

0 1 ¢ ¢ ¢ 1
1 Qs1s1 ¢ ¢ ¢ Qs1sls

:::
:::

: : :
:::

1 Qsls s1 ¢ ¢ ¢ Qsls sls

3

7775

¡1

; (3.11)

must be updated whenever the S set is changed. Following Cauwenberghs
and Poggio (2001), we can ef�ciently update R without explicitlycomputing
the matrix inverse. When the kth sample xsk in the S set is removed from the
S set, the new R can be obtained as follows:

Rnew D RI;I ¡
RI;kRk;I

Rk;k
; where

I D [1 ¢ ¢ ¢ k k C 2 ¢ ¢ ¢ Sls C 1]: (3.12)

When a new sample is added to S set, the new R can be updated as follows:

Rnew D

2

6664

0

R
:::

0
0 ¢ ¢ ¢ 0 0

3

7775 C
1
°i

µ
¯
1

¶ £
¯T 1

¤
; (3.13)

where ¯ is de�ned as

¯ D ¡R

2

6664

1
Qs1 i

:::

Qsls i

3

7775 ;

and °i is de�ned as

°i D Qii C

2

6664

1
Qs1i

:::

Qsls i

3

7775 ¯

when the sample xi was moved from E set to R set. In contrast, when the
sample xc is the sample added to S set, ¯ is can be obtained according to
equation 3.7, and °i is the last element of ° de�ned in equation 3.9.

3.4 Initialization of the Incremental Algorithm. An initial SVR solu-
tion can be obtained from a batch SVR solution, and in most cases that is the
most ef�cient approach. But it is sometimes convenient to use AOSVR to
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produce a full solution from scratch. An ef�cient starting point is the two-
sample solution. Given a training set T D f.x1; y1/; .x2; y2/g, with y1 ¸ y2,
the solution of equation 2.3 is

µ1 D max
³

0; min
³

C;
y1 ¡ y2 ¡ 2"

2.K11 ¡ K12/

´´

µ2 D ¡µ1

b D .y1 D y2/=2: (3.14)

The sets E, S, and R are initialized from these two points based on equa-
tions 2.10 through 2.12. If the set S is nonempty, the matrix R can be ini-
tialized from equation 3.11. As long as S is empty, the matrix R will not be
used.

4 Decremental Algorithm

The decremental (or “unlearning”) algorithm is employed when an existing
sample is removed from the training set. If a sample xc is in the R set, then it
does not contribute to the SVR solution, and removing it from the training
set is trivial; no adjustments are needed. If, on the other hand, xc has a
nonzero coef�cient, then the idea is to gradually reduce the value of the
coef�cient to zero, while ensuring all the other samples in the training set
continue to satisfy the KKT conditions.

The decremental algorithm follows the incremental algorithm with a few
small adjustments:

² The direction of the change of µc is:

sign.1µc/ D sign. f .xc/ ¡ yc/ D sign.h.xc//: (4.1)

² There is no case 1 because the removed xc need not satisfy KKT con-
ditions.

² The condition in case 2 becomes: µc changing from jµcj > 0 to µc D 0.

5 Applications and Comparison with Batch Algorithms

The accurate on-line SVR (AOSVR) learning algorithm produces exactly
the same SVR as the conventional batch SVR learning algorithm and can
be applied in all scenarios where batch SVR is currently employed. But for
on-line time-series prediction and leave-one-out cross-validation (LOOCV),
the AOSVR algorithm is particularly well suited. In this section, we demon-
strate AOSVR for both of these applications and compare its performance to
existing batch SVR algorithms. These comparisons are based on direct tim-
ing of runs using Matlab implementations; such timings should be treated
with some caution, as they can be sensitive to details of implementation.
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5.1 AOSVR versus Batch SVR Algorithms with Warm Start. Most
batch algorithms for SVR are implemented as “cold start.” This is appro-
priate when a �t is desired to a batch of data that has not been seen before.
However, in recent years, there has been a growing interest in “warm-start”
algorithms that can save time by starting from an appropriate solution, and
quite a few articles have addressed this issue in the generic context of nu-
meric programming (Gondzio, 1998; Gondzio & Grothey, 2001; Yildirim &
Wright, 2002; Fliege & Heseler, 2002). The warm-start algorithms are useful
for incremental (or decremental) learning, because the solution with N ¡ 1
(or N C 1) data points provides a natural starting point for �nding the so-
lution with N data points. In this sense, AOSVR is a kind of warm-start
algorithm for the QP problem, equation 2.3, which is specially designed
for the incremental or decremental scenario. This specialty allows AOSVR
to achieve more ef�ciency when handling SVR incremental or decremental
learning, as demonstrated in our subsequent experiments.

In the machine learning community, three algorithms for batch SVRtrain-
ing are widely recognized: Gunn (1998) solved SVR training as a generic
QP optimization; we call this implementation QPSVMR; Shevade, Keerthi,
Bhattacharyya, and Murthy (1999) proposed an algorithm specially de-
signed for SVR training, and it is an improved version of the sequential min-
imal optimization for SVM regression (SMOR); and Chang and Lin (2001)
proposed another algorithm specially designed for SVR training, which we
call LibSVMR since it is implemented as part of the LibSVM software pack-
age. We implemented all these algorithms so that they can run in both a
cold-start and a warm-start mode. SMOR and LibSVMR are implemented
in Matlab, and both algorithms allow a straightforward warm-start realiza-
tion. Because QPSVMR is based on a generic QP algorithm, it is much less
ef�cient than SMOR or LibSVMR. To make our subsequent experiments
feasible, we had to implement the QPSVMR core in C (Smola, 1998). Smola
essentially employs the interior point QP code of LOQO (Vanderbei, 1999).
The warm start of QPSVMR directly adopts the warm-start method embed-
ded in Smola’s (1998) implementation.

5.2 On-line Time-Series Prediction. In recent years, the use of SVR for
time-series prediction has attracted increased attention (Müller et al., 1997;
Fernández, 1999; Tay & Cao, 2001). In an on-line scenario, one updates a
model from incoming data and at the same time makes predictions based
on that model. This arises, for instance, in market forecasting scenarios.
Another potential application is the (near) real-time prediction of electron
density around a satellite in the magnetosphere; high charge densities can
damage satellite equipment (Friedel, Reeves, and Obara, 2002), and if times
of high charge can be predicted, the most sensitive components can be
turned off before they are damaged.

In time-series prediction, the prediction origin, denoted O, is the time
from which the prediction is generated. The time between the prediction
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origin and the predicted data point is the prediction horizon, which for
simplicity we take as one time step.

A typical on-line time-series prediction scenario can be represented as
follows (Tashman, 2000):

1. Given a time series fx.t/; t D 1; 2; 3; : : :g and prediction origin O,
construct a set of training samples, AO;B, from the segment of time
series fx.t/; t D 1; : : : ; Og as AO;B D f.X.t/; y.t//; t D B; : : : ; 0 ¡ 1g,
where X.t/ D [x.t/; : : : ; x.t ¡ B C 1/]T; y.t/ D x.t C 1/, and B is the
embedding dimension of the training set AO;B.

2. Train a predictor P.AO;BI X/ from the training set AO;B.

3. Predict x.O C 1/ using Ox.O C 1/ D P.AO;BI X.O//.

4. When x.0 C 1/ becomes available, update the prediction origin: O D
O C 1. Then go to step 1 and repeat the procedure.

Note that the training set AO;B keeps growing as O increases, so the
training of the predictor in step 2 becomes increasingly expensive. There-
fore, many SVR-based time-series predictionsare implemented in a compro-
mised way (Tay & Cao, 2001). After the predictor is obtained, it stays �xed
and is not updated as new data arrive. In contrast, an on-line prediction
algorithm can take advantage of the fact that the training set is augmented
one sample at a time and continues to update and improve the model as
more data arrive.

5.2.1 Experiments. Two experiments were performed to compare the
AOSVR algorithm with the batch SVR algorithm. We were careful to use
the same algorithm parameters for on-line and batch SVR, but since our
purpose is to compare computational performance, we did not attempt to
optimize these parameters for each data set. In these experiments, the kernel
function is a gaussian radial basis function, exp.¡° kXi¡Xjk2/, where ° D 1;
the regularization coef�cient C and the insensitivity parameter " in equation
2.1 are set to 10 and 0.1, respectively; the embedding dimension, B, of the
training AO;B, is 5. Also, we scale all the time-series to [¡1,1].

Three widely used benchmark time series are employed in both exper-
iments: (1) the Santa Fe Institute Competition time series A (Weigend &
Gershenfeld,1994), (2) the Mackey-Glass equation with ¿ D 17 (Mackey
& Glass, 1977), and (3) the yearly average sunspot numbers recorded from
1700 to 1995. Some basic information about these time series is listed in Ta-
ble 1. The SV ratio is the number of support vectors divided by the number
of training samples. This is based on a prediction of the last data point using
all previous data for training. In general, a higher SV ratio suggests that the
underlying problem is harder (Vapnik, 1998).

The �rst experiment demonstrates that using a �xed predictor produces
less accurate predictions than using a predictor that is updated as new data



2694 J. Ma, J. Theiler, and S. Perkins

Table 1: Information Regarding Experimental Time Series.

Number of Data Points SV Ratio

Santa Fe Institute 1000 4.52%
Mackey-Glass 1500 1.54
Yearly Sunspot 292 41.81

become available. Two measurements are used to quantify the prediction
performance: mean squared error (MSE) and mean absolute error (MAE).
The predictors are initially trained on the �rst half of the data in the time
series. In the �xed case, the same predictor is used to predict the second half
of the time series. In the on-line case, the predictor is updated whenever a
new data point is available. The performance measurements for both cases
are calculated from the predicted and actual values of the second half of the
data in the time series. As shown in Table 2, the on-line predictor outper-
forms the �xed predictor in every case. We also note that the errors for the
three time series in Table 2 coincide with the estimated prediction dif�culty
in Table 1 based on the SV ratio.

The second experiment compares AOSVR with batch implementations
using both cold start and warm start in the on-line prediction scenario.
For each benchmark time series, an initial SVR predictor is trained on the
�rst two data points using the batch SVR algorithms. For AOSVR, we used
equation 3.14. Afterward, both AOSVR and batch SVR algorithms are em-
ployed in the on-line prediction mode for the remaining data points in the
time series. AOSVR and the batch SVR algorithms produce exactly the same
prediction errors in this experiment, so the comparison is only of predic-
tion speed. All six batch SVR algorithms are compared with AOSVR on the
sunspot time series, and the experimental results are plotted in Figure 2. The
x-axis of this plot is the number of data points to which the on-line predic-
tion model is applied. Note that the core of QPSVMR is implemented in C.
Because the cold start and warm start of LibSVMR clearly outperform those
of both SMOR and QPSVMR, only the comparison between LibSVMR and
AOSVR is carried out in our subsequent experiments. The experimental re-

Table 2: Performance Comparison for On-line and Fixed Predictors.

On-line Fixed

Santa Fe Institute MSE 0.0072 0.0097
MAE 0.0588 0.0665

Mackey-Glass MSE 0.0034 0.0036
MAE 0.0506 0.0522

Yearly Sunspot MSE 0.0263 0.0369
MAE 0.1204 0.1365
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Figure 2: Real-time prediction time of yearly sunspot time series.

sults of both Santa Fe Institute and Mackey-Glass time series are presented
in Figures 3 and 4, respectively.

These experimental results demonstrate that AOSVR algorithm is gen-
erally much faster than the batch SVR algorithms when applied to on-line
prediction. Comparison of Figures 2 and 4 furthermore suggests that more
speed improvement is achieved on the sunspot data than on the Mackey-
Glass. We speculate that this is because the sunspot problem is “harder”
than the Mackey-Glass (it has a higher support vector ratio) and that the
performance of the AOSVR algorithm is less sensitive to problem dif�culty.

To test this hypothesis, we compared the performance of AOSVR to Lib-
SVMR on a single data set (the sunspots) whose dif�culty was adjusted by
changing the value of ". A smaller " leads to a higher support vector ratio
and a more dif�cult problem. Both the AOSVR and LibSVMR algorithms
were employed for on line prediction of the full time series. The overall
prediction times are plotted against " in Figure 5. Where AOSVR perfor-
mance varied by a factor of less than 10 over the range of ", the LibSVMR
performance varied by a factor of about 100.

5.2.2 Limited-Memory Version of the On-line Time-Series Prediction Scenario.
One problem with on-line time-series prediction in general is that the longer
the prediction goes on, the bigger the training set AO;B will become, and the
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Figure 3: Real-time prediction time of Santa Fe Institute time series.
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Figure 4: Real-time prediction time of Mackey-Glass time series.
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Figure 5: Semilog and linear plots of prediction time of yearly sunspot time
series.

more SVs will be involved in SVR predictor. A complicated SVR predictor
imposes both memory and computation stress on the prediction system.
One way to deal with this problem is to impose a “forgetting” time W.
When training set AO;B grows to this maximum W, then the decremental
algorithm is used to remove the oldest sample before the next new sample
is added to the training set.

We note that this variant of the on-line prediction scenario is also poten-
tially suitable for nonstationary time series, as it can be updated in real time
to �t the most recent behavior of the time series. More rigorous investigation
in this direction will be a future effort.

5.3 Leave-One-Out Cross-Validation. Cross-validation is a useful tool
for assessing the generalization ability of a machine learning algorithm. The
idea is to train on one subset of the data and then to test the accuracy of
the predictor on a separate disjoint subset. In leave-one-out cross-validation
(LOOCV), only a single sample is used for testing, and all the rest are used
for training. Generally, this is repeated for every sample in the data set.
When the batch SVR is employed, LOOCV can be very expensive, sincea full
retraining is done for each sample. One compromise approach is to estimate
LOOCV with related but less expensive approximations, such as the xi-
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alpha bound (Joachims, 2000), and approximate span bound (Vapnik &
Chapelle, 1999). Although Lee and Lin (2001) proposed a numerical solution
to reduce the computation for directly implementing LOOCV, the amount of
computation required is still considerable. Also, the accuracy of the LOOCV
result obtained using this method can be potentially compromised because
a different parameter set is employed in LOOCV and in the �nal training.

The decremental algorithm of AOSVR provides an ef�cient implemen-
tation of LOOCV for SVR:

1. Given a data set D, construct the SVR function f .x/ from the whole
data set D using batch SVR learning algorithm.

2. For each nonsupport vector xi in the data set D, calculate error ei
corresponding to xi as: ei D yi ¡ f .xi/, where yi is the target value
corresponding to xi .

3. For each support vector xi involved in the SVR function f .x/,

(a) Unlearn xi from the SVR function f .x/ using the decremental
algorithm to obtain the SVR function fi.x/, which would be
constructed from the data set Di D D=fxig.

(b) Calculate error ei corresponding to support vector xi as: ei D
yi ¡ fi.xi/, where yi is the target value corresponding to xi .

4. Knowing the error for each sample xi in D, it is possible to construct
a variety of overall measures; a simple choice is the MSE,

MSELOOCV.D/ D
1
N

NX

i
e2
i ; (5.1)

where N is the number of samples in data set D. Other choices of
error metric, such as MAE, can be obtained by altering equation 5.1
appropriately.

5.3.1 Experiment. The algorithm parameters in this experiment are set
the same as those in the experiments in section 5.1.1. Two famous regression
data sets, the Auto-MPG and Boston Housing data sets, are chosen from the
UCI Machine-Learning Repository. Some basic information on these data
sets is listed in Table 3.

Table 3: Information Regarding Experimental Regression Data Sets.

Number of Attributes Number of Samples SV Ratio

Auto-MPG 7 392 41.07%
Boston Housing 13 506 36.36%
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Figure 6: Semilog plots of LOOCV time of Auto-MPG and Boston Housing data
set.

The experimental results of both data sets are presented in Figure 6. The
x-axis is the size of the training set, upon which the LOOCV is implemented.
These plots show that AOSVR-based LOOCV is much faster than its Lib-
SVMR counterpart.

6 Conclusion

We have developed and implemented an accurate on-line support vector
regression (AOSVR) algorithm that permits ef�cient retraining when a new
sample is added to, or an existing sample is removed from, the training set.
AOSVR is applied to on-line time-series prediction and to leave-one-out
cross-validation, and the experimental results demonstrate that the AOSVR
algorithm is more ef�cient than conventional batch SVR in these scenarios.
Moreover, AOSVR appears less sensitive than batch SVR to the dif�culty of
the underlying problem.

After this manuscript was prepared, we were made aware of a similar on-
line SVR algorithm, which was independently presented in Martin (2002).
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Appendix: Pseudocode for Incrementing AOSVR with a New Data
Sample

Inputs

² Training set T D fxi; yi/; i D 1; : : : ; lg
² Coef�cients fµi; i D 1; : : : ; lg, and bias b

² Partition of samples into sets S, E, and R

² Matrix R de�ned in equation 3.11

² New sample .xc; yc/

Outputs

² Updated coef�cients fµi; i D 1; : : : ; l C 1g and bias b.

² Updated Matrix R

² Updated partition of samples into sets S, E, and R

AOSVR Incremental Algorithm

² Initialize µc D 0

² Compute f .xc/ D
X

i2E[S

µiQic C b

² Compute h.xc/ D f .xc/ ¡ yc

² I jh.xc/j · ", then assign xc to R, and terminate.

² Let q D sign.¡h.xc// be the sign that 1µc will take

² Do until the new sample xc meets the KKT condition

— Update ¯; ° according to equations 3.7 and 3.9
— Start bookkeeping procedure:

Check the new sample xc,
—Lc1 D .¡h.xc/ ¡ q"/=°c (Case 1)
—Lc2 D qC ¡ µc (Case 2)
Check each sample xi in the set S (Case 3)
—If q̄ i > 0 and C > µi ¸ 0; LS

i D .C ¡ µi/=¯i

—If q̄ i > 0 and 0 > µi ¸ ¡C; LS
i D ¡µi=¯i

—If q̄ i < 0 and C ¸ µi > 0; LS
i D ¡µi=¯i

—If q̄ i < 0 and 0 ¸ µi > ¡C; LS
i D .¡C ¡ µi/=¯i

Check each sample xi in the set E (Case 4)
—LE

i D .¡h.xi/ ¡ sign.q¯i/"/=¯i

Check each sample xi in the set R (Case 5)
—LR

i D .¡h.xi/ ¡ sign.q¯i/"/=¯i
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Set 1µc D qmin.jLc1j; jLc2j; jLSj; jLEj jLRj/; where
LS D fLS

i ; i 2 Sg; LE D fLE
i ; i 2 Eg; and LR D fLR

i ; i 2 Rg:
Let Flag be the case number that determines 1µ:

Let xl be the particular sample in T that determines 1µc:

— End Bookkeeping Procedure.
— Update µc; b; and µi; i 2 S according to equation 3.6
— Update h.xi/; i 2 E [ R according to equation 3.8
— Switch Flag

(Flag=1):
Add new sample xc to set S; update matrix R according
to equation 3.13
(Flag=2):
Add new sample xc to set E
(Flag=3):
If µl D 0, move xl to set R; update R according to equa-
tion 3.12
If jµlj D C, move xl to set E; update R according to
equation 3.12
(Flag=4):
Move xl to set S; update R according to equation 3.13
(Flag=5):
Move xl to set S; update R according to equation 3.13

— End Switch Flag
— If Flag· 2, terminate; otherwise continue the Do-Loop.

² Terminate incremental algorithm; ready for the next sample.
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